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The purpose of gapfilling

* Replacement of missing
or bad flux records to
allow for determining
matter or energy budgets
over prolonged periods

* The replacement
procedure Is based on
"good” fluxes

Kolari et al. 2004

/ 200

Clearcut, 2000 _...-- 1 400

_________

—200

sV & IS
) ) )
] ] 2
s\g R
o

2

Cumulative NEE (g Cm™)

...........

75 yr, 2001 1—400

50 100 150 200 250 300 350
Julian date

Fig. 4 Cumulative net ecosystem exchange (NEE) and the year
of the measurements for Scots pine stands of different ages. Solid
lines indicate measured NEE, dotted lines modelled NEE.
Positive sign indicates release of carbon by the stand, negative
sign uptake of carbon.



The purpose of gapfilling

o Especially important with EC as the proportion
of "bad” flux records is considerable
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Binning "good” and "bad” fluxes

 Definition of "good” = turbulent transport well
representative of total exchange

e Somewhat subjective decision, no universal rules or
threshold values exist

— strength of turbulence (e.qg. friction velocity u*, std w),
u* vs normalised NEE is frequently used criterion

— stability (e.g. Monin-Obukhov length)
— flux stationarity



Nighttime NEE vs u*

Markkanen et al. 2001

Fig. 2. Nocturnal summer-
time total fluxes (at 23 me-
ters) of the periods with air
temperature 2 °C < T, <
8 °C as a function of fric-
tion velocity. Total fluxis a
sum of flux measured by
: , . eddy-covariance and the
i, e )l storage term calculated
from the gas concentration
| ! ! gradient. The line indicates
0 0.3 0.6 0.9 a running average of the
U (ms) total flux.

e U* threshold of 0.25 m s

 Different acceptance criteria were applied for
daytime fluxes

Total CO, flux (umol m=2s-1)




Basic gapfilling methods

* Replacing missing or bad records by utilising regular
patterns in the fluxes; accepted fluxes measured in the
same time of day, similar conditions etc.

— Replacement by mean value; very questionable, why?
— Interpolation
* very short gaps only, a bit questionable, why?
— Mean diurnal variation — temporal autocorrelation of fluxes
— Look-up tables — flux dependence on environment

— Regressions of fluxes on environmental variables
* most widely used method

— Recursive flux estimation algorithms (e.g. Kalman filter)
— Artificial neural networks



Basic methods: Mean diurnal variation

 Bin-averages of half hours (or hours) on previous and
subsequent days

— time window typically days to weeks
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Basic methods: Look-up tables

 Utilising other regularities in fluxes than just
temporal patterns

« Weather conditions = environmental driving
factors of fluxes

e Example:
Missing flux at {R,,=536 W/m?, T,;,=20.5°C}
s replaced by
mean accepted flux at {R,,=500...600 W/m?,
T,.=20...25°C}

alr



Basic methods: (Nonlinear) regressions

e Purely statistical models

— In theory models could be formulated in a way that
optimises robustness of parameter estimation (e.g.
multiple imputation, Hui et al. 2004)

— In practise arbitrary regressions are not widely used for
CO, fluxes because simple process models for partitioning
the net flux into main components exist

o Simple aggregated process descriptions
— CO, exchange NEE =GPP + R,

— Gross CO, uptake = Gross Prlmary Production = ecosystem

photosynthesis
GPP =f(l, T, VPD, ...)

— Gross CO, release = ecosystem respiration
R = f(Talr’ T soil WsoiI’ )



Other gapfilling methods

e Kalman filter

— Basically (nonlinear) regressions with parameter
estimation procedure more sophisticated than
normal least-squares fitting

— Recursive algorithm with more weight being given
to flux estimates with higher certainty

o Artificial neural networks (ANN)

— "learning” algorithms, no fixed pre-assumed
relationships between explanatory variables and
fluxes



Gapfilling of heat fluxes

* Observed surface energy balance is dependent on

turbulence
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Gapfilling of heat fluxes

» Simpler methods than in CO, flux gapfilling are sufficient

— Heat fluxes in conditions of high stability/low turbulence
are small

— Difference in annual LE with and without turbulence filtering
(only missing records filled) just few %
vs tens of % in NEE

ET (mmol m?s?)vs
Rpet (W M)

black = good data
red = rejected data
(low turbulence,
storage change
missing, errors in
raw data,...)




Gapfilling of heat fluxes

» Heat fluxes are largely driven by solar energy
—>Regressions of fluxes on
available radiative energy (Rpet, Ryion)
— Priestley-Taylor model | |
: ARn+ pc, (e -e, )/,
— Penman-Monteith model LE = £ '

T
1+ =
. T2 )

— Simple empirical regressions A+y

* Energy balance methods



Example of using nonlinear regression
models for gapfilling of CO, fluxes

 Flux partitioning into GPP and ecosystem respiration

NEE =R, - GPP

Re = Rref el

pp _ O+ Py — Jd +P,, ¥ - 40a1P,,
20

* Oisfixed,

a and P, vary over year, estimated in moving time window

: : al P
* more simple version GPP = max

al +P.




Example of using nonlinear regression
models for gapfilling of CO, fluxes

 Estimation of the slope of the T response of R,
using night-time fluxes
— often requires time window of a month or more

Night-time CO, flux vs.
temperature in the soll
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Example of using nonlinear regression
models for gapfilling of CO, fluxes

 Storage-corrected NEE vs PPFD over 9 days of July in
Hyytiala

max

Re = Ryer Q! 1Y al + P, —(cad +P,, V- 40aIP,,,

max

20



Example of using nonlinear regression
models for gapfilling of CO, fluxes

» Storage-corrected NEE vs PPFD over 9 days in Hyytiala
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Example of using nonlinear regression
models for gapfilling of CO, fluxes

* Temporal patterns of gapfilling model parameters
o Parameters estimated in moving time window of 9 days
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Interpretation of temporal dynamics
In gapfilling

* Instantaneous responses vs 1 early April
seasonal changes in the state ~ s|
of the ecosystem g

L IQIDD 12.50 IShD
— state changes - instantaneous -°

responses change -10
 Essential to consider at =1
northern latitudes where the |,
: . late September
seasonality is very strong £

— also important where the
seasonal drought affects fluxes ~_1*

« Estimation of gapfilling model
parameters in narrow (sliding) .
time window

. JUO 730 1000 1230 1300




The Importance of mechanistic and
unbiased CO, flux partitioning

 Modellers use EC data (net exchange or component
fluxes)
— for estimating model parameters
— as independent data for testing models

e GPP is often requested data by ecosystem modellers,

usually a by-product of gapfilling
and happily accepted as is by the modellers!



Diurnal patterns of GPP and R, with
different drivers
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Fig. 11. Diurnal patterns of chamber-based A, and GPP
in comparison with R, _. and GPP_, calculated using dif-
ferent explanatory factors for the A, model. The diurnal
patterns were averaged for 15 June—15 July 2004. The
sensitivity of R___ to each type of temperature was first
estimated from night-time EC fluxes in June and July.
Light-saturated stand GPP (P, __) and the base level
of R, (R,,) were then estimated daily in a moving time
window of nine days. R _ (T ) and GPP_(T_) refer
to air temperature as the explanatory factor, R__.(7.)
and GPP_(T,) to the organic layer temperature, and
R, .(T,) and GPP_,(T,) to the temperature at the depth

2'4 of 5 cm from the mineral soil surface.

Kolari et al. 2009



Daily GPP (g C m2d?)

GPP (T_sail) / GPP (T_air)

Parameterising a model of daily forest GPP
using eddy-covariance GPP
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Variability of cumulative NEE among
different gapfilling methods

* For NEE, selection of method is not critical
— bias in annual NEE <10% vs tens of % without data filtering
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Variability of cumulative CO, component
fluxes among different gapfilling methods

» GPP and R, are more sensitive than NEE to the type
of the gapfilling model (typical example of drawing
the right conclusion by false thinking)
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Frequency

Statistical considerations

e The random error in fluxes is double-exponentially

rather than normally distributed

A.D. Richardson et al./Agricultural and Forest Meteorology 136 (2006) 1-15
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Statistical considerations

Half-hourly EC fluxes are heteroscedastic,
l.e. variance is not constant

— Absolute error increases but relative error
gets smaller as the magnitude of the flux
Increases

o Least-squares methods that are based on

assumptions of constant variance and
normal distribution of error do not result
In maximum likelihood parameter values

 In practise these issues are ignored
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Final remarks

 Always flag the gapfilled fluxes

— You must not use momentary gapfilled fluxes for other
purposes than calculating budgets or analysing the
gapfilling method itself!

— Never underestimate other peoples’ ability to
misinterpret your datal!

« Think why you are gapfilling fluxes

— Determining long-term budgets: statistical robustness,
“simulation of data”

— Modelling use: mechanistic basis preferable,
“simulation of processes”
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Online gapfilling tool http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/




?) Online Eddy covariance gap-filling and flux-partitioning tool - Mozilla Firefox
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and running again,

Background

Problerm 1: The eddy covariance method delivers continuous data sets of mass and energy exchange between

ecosystem and atmosphere, However, gaps due to unfavorable micro-meteorological conditions and due to

instrument failure are inherent in the data stream. Thus a standardized filling of those gaps is necessary

(gap-filling), &.g. to obtain daily, monthly or annually integrated balances.

Problem 2 The eddy covariance method measures the net ecosystem exchange, However, particularly for COsz
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