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The purpose of gapfilling
• Replacement of missing 

or bad flux records to 
allow for determining 
matter or energy budgets 
over prolonged periods

• The replacement 
procedure is based on 
”good” fluxes

Kolari et al. 2004



The purpose of gapfilling
• Especially important with EC as the proportion 

of ”bad” flux records is considerable
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Binning ”good” and ”bad” fluxes 

• Definition of ”good” = turbulent transport well 
representative of total exchange 

• Somewhat subjective decision, no universal rules or 
threshold values exist
– strength of turbulence (e.g. friction velocity u*, std w),

u* vs normalised NEE is frequently used criterion
– stability (e.g. Monin-Obukhov length)
– flux stationarity



Nighttime NEE vs u*

• u* threshold of 0.25 m s-1

• Different acceptance criteria were applied for 
daytime fluxes

Markkanen et al. 2001



Basic gapfilling methods
• Replacing missing or bad records by utilising regular 

patterns in the fluxes; accepted fluxes measured in the 
same time of day, similar conditions etc.
– Replacement by mean value; very questionable, why?
– Interpolation

• very short gaps only, a bit questionable, why?
– Mean diurnal variation – temporal autocorrelation of fluxes
– Look-up tables – flux dependence on environment
– Regressions of fluxes on environmental variables 

• most widely used method
– Recursive flux estimation algorithms (e.g. Kalman filter)
– Artificial neural networks



Basic methods: Mean diurnal variation
• Bin-averages of half hours (or hours) on previous and 

subsequent days
– time window typically days to weeks

Diurnal patterns of accepted NEE over one summer month

Kolari et al. 2004



Basic methods: Look-up tables

• Utilising other regularities in fluxes than just 
temporal patterns

• Weather conditions = environmental driving 
factors of fluxes

• Example: 
Missing flux at {Rglob=536 W/m2, Tair=20.5°C} 
is replaced by
mean accepted flux at {Rglob=500…600 W/m2, 
Tair=20…25°C}



Basic methods: (Nonlinear) regressions
• Purely statistical models

– In theory models could be formulated in a way that 
optimises robustness of parameter estimation (e.g. 
multiple imputation, Hui et al. 2004)

– In practise arbitrary regressions are not widely used for 
CO2 fluxes because simple process models for partitioning 
the net flux into main components exist

• Simple aggregated process descriptions
– CO2 exchange  NEE = GPP + Re
– Gross CO2 uptake = Gross Primary Production = ecosystem 

photosynthesis
GPP = f(I, Tair , VPD, …)

– Gross CO2 release = ecosystem respiration
Re = f(Tair, Tsoil , Wsoil, …)



Other gapfilling methods

• Kalman filter
– Basically (nonlinear) regressions with parameter 

estimation procedure more sophisticated than 
normal least-squares fitting

– Recursive algorithm with more weight being given 
to flux estimates with higher certainty

• Artificial neural networks (ANN)
– ”learning” algorithms, no fixed pre-assumed 

relationships between explanatory variables and 
fluxes



Gapfilling of heat fluxes
• Observed surface energy balance is dependent on 

turbulence
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Gapfilling of heat fluxes
• Simpler methods than in CO2 flux gapfilling are sufficient

– Heat fluxes in conditions of high stability/low turbulence 
are small

– Difference in annual LE with and without turbulence filtering 
(only missing records filled) just few % 
vs tens of % in NEE

ET (mmol m-2 s-1) vs 
Rnet (W m-2)

black = good data
red = rejected data 
(low turbulence, 
storage change 
missing, errors in 
raw data,…)



Gapfilling of heat fluxes

• Heat fluxes are largely driven by solar energy 
Regressions of fluxes on 

available radiative energy (Rnet, Rglob)
– Priestley-Taylor model
– Penman-Monteith model
– Simple empirical regressions

• Energy balance methods



Example of using nonlinear regression 
models for gapfilling of CO2 fluxes

• Flux partitioning into GPP and ecosystem respiration

NEE = Re - GPP
Re = Rref ef(T)

• is fixed, 
and Pmax vary over year, estimated in moving time window

• more simple version
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Example of using nonlinear regression 
models for gapfilling of CO2 fluxes

• Estimation of the slope of the T response of Re
using night-time fluxes
– often requires time window of a month or more
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Example of using nonlinear regression 
models for gapfilling of CO2 fluxes

• Storage-corrected NEE vs PPFD over 9 days of July in 
Hyytiälä

~Rref

Pmax
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Example of using nonlinear regression 
models for gapfilling of CO2 fluxes

• Storage-corrected NEE vs PPFD over 9 days in Hyytiälä
early April late September

mid-July



Example of using nonlinear regression 
models for gapfilling of CO2 fluxes

• Temporal patterns of gapfilling model parameters
• Parameters estimated in moving time window of 9 days

Pmax (µmol m-2 s-1)

Day of year Day of year

Rref (µmol m-2 s-1), Tref=0



Interpretation of temporal dynamics 
in gapfilling

• Instantaneous responses vs 
seasonal changes in the state
of the ecosystem
– state changes instantaneous 

responses change
• Essential to consider at 

northern latitudes where the 
seasonality is very strong 
– also important where the 

seasonal drought affects fluxes 
• Estimation of gapfilling model 

parameters in narrow (sliding) 
time window 



The importance of mechanistic and 
unbiased CO2 flux partitioning

• Modellers use EC data (net exchange or component 
fluxes) 
– for estimating model parameters
– as independent data for testing models

• GPP is often requested data by ecosystem modellers,
usually a by-product of gapfilling 
and happily accepted as is by the modellers!



Diurnal patterns of GPP and Re with 
different drivers

• Biological relevance of 
gapfilling model 
variables is preferable!

Kolari et al. 2009



Parameterising a model of daily forest GPP 
using eddy-covariance GPP 

Especially VPD modifier is heavily 
affected by TER submodel selection
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Variability of cumulative NEE among 
different gapfilling methods

• For NEE, selection of method is not critical
– bias in annual NEE <10% vs tens of % without data filtering

Moffat et 
al. 2007



Variability of cumulative CO2 component 
fluxes among different gapfilling methods

• GPP and Re are more sensitive than NEE to the type 
of the gapfilling model (typical example of drawing 
the right conclusion by false thinking)

Desai et al. 
2008



Statistical considerations
• The random error in fluxes is double-exponentially 

rather than normally distributed



Statistical considerations
• Half-hourly EC fluxes are heteroscedastic, 

i.e. variance is not constant
– Absolute error increases but relative error 

gets smaller as the magnitude of the flux 
increases

• Least-squares methods that are based on 
assumptions of constant variance and 
normal distribution of error do not result 
in maximum likelihood parameter values

• In practise these issues are ignored



Final remarks
• Always flag the gapfilled fluxes

– You must not use momentary gapfilled fluxes for other 
purposes than calculating budgets or analysing the 
gapfilling method itself!

– Never underestimate other peoples’ ability to 
misinterpret your data!

• Think why you are gapfilling fluxes
– Determining long-term budgets: statistical robustness, 

”simulation of data” 
– Modelling use: mechanistic basis preferable, 

”simulation of processes”



Further reading
• Falge et al. 2001. Gap filling strategies for defensible annual sums of net 

ecosystem exchange. Agricultural and Forest Meteorology 107, 43–69.

• Falge et al. 2001. Gap filling strategies for long term energy flux data sets. 
Agricultural and Forest Meteorology 107, 71–77.

• Gu et al. 2005. Objective threshold determination for nighttime eddy flux 
filtering. Agricultural and Forest Meteorology 128, 179–197.

• Moffat et al. 2007. Comprehensive comparison of gap-filling techniques 
for eddy covariance net carbon fluxes. Agricultural and Forest 
Meteorology 147, 209–232.

• Reichstein et al. 2005. On the separation of net ecosystem exchange into 
assimilation and ecosystem respiration: review and improved algorithm. 
Global Change Biology 11, 1424–1439.
Online gapfilling tool http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/




