Eddy Covariance, setup, site – design, instrument selection & calibration

Sigrid Dengel/Sami Haapanala
University of Helsinki
Overview

- How to catch eddies...
- Instrumentation types and their inner lives...
- Where to catch eddies?
- Are we using the right “catcher”?
- Are we catching the right eddies?
- How to clean and keep the catcher clean;
- ... and once we have finished catching eddies...
Why are we using eddy covariance?

The vertical component of wind velocity is derived from data provided by a three axis sonic anemometer, while the carbon dioxide (CO₂) and water vapour (H₂O) concentrations are measured with a gas analyser.
Ultrasonic anemometers

- short ultrasonic pulses sent between the transducers;
- velocity of air parcel summed to sound velocity;
- sound velocity in the air depends on temperature and humidity → sonic temperature (≈ virtual temperature);
- one pulse travels < 1 ms → full 3D wind vector solved within 10 ms (10 Hz);
- Several reliable anemometers (Campbell, Gill, Metek, etc)
Ultrasonic anemometers:

- **Campbell - CSAT3**
 - user friendly;
 - needs to be orientated into main wind direction;
 - no need for “cross wind “ correction;

- **Gill - R3 (3-axis), HS**
 - does not need to be orientated towards North;
 - angle of attack corrections;

- **METEK –USA1**
 - no need to be orientated towards North but makes life easier;
 - “cross wind” correction;
Gas analysers

- absorption of electromagnetic radiation by gases;
- many useful bands within near to mid infrared region;

Kidder & Vonder Haar, 1995
InfraRed gas analysers (IRGA)

- measures light absorption within carefully selected absorption band of about 0.1 μm;
- sensitive to temperature, pressure, gas matrix... (but easy to correct);

LI-COR (1996)
InfraRed gas analysers (IRGA)

- Closed-path gas analyser:
 - LI-6262 (CO$_2$/H$_2$O)
 - requires an external pump;
 - requires constant reference gas supply;
 - frequent calibration checks/calibration needed;
 - tube attenuation; lag time;
 - LI-7000 (CO$_2$/H$_2$O)
 - requires an external pump(??);
 - requires constant reference gas supply;
 - frequent calibration checks/calibration needed;
 - tube attenuation; lag time;
InfraRed gas analysers (IRGA)

- Open-path gas analyser:
 - LI-7500 (CO₂/H₂O)
 - no need for external pump;
 - low power requirement;
 - no need for reference gas;
 - user friendly; light weight;
 - no time lag;
InfraRed gas analysers (IRGA)

- Closed-path (enclosed) gas analyser:
 - LI-7200 (CO₂/H₂O)
 - comes with its own pump;
 - low power requirement;
 - no need for reference gas;
 - user friendly;
 - own logging system;
 - light weight;
 - tube attenuation;
Laser spectroscopy

- measures light absorption within carefully selected, species specific absorption feature of about 0.0001 μm;
- sensitive to temperature and pressure (but easy to correct)

- several different implementations
 - absorption within single pass cell
 - absorption within multipass cell (effective pathlength increased for better sensitivity)
 - cavity ring down cell (less sensitive to laser power variation)
 - integrated cavity output spectroscopy (ICOS)
Laser spectroscopy

- Licor: open path multipass cell
 \(\text{CH}_4 \)
- Campbell: closed path single pass cell
 \(\text{CH}_4, \text{N}_2\text{O} \text{ etc...} \)
- Aerodyne: closed path multipass cell
 \(\text{CH}_4, \text{CO}, \text{CO}_2, \text{N}_2\text{O}, \text{H}_2\text{O} \text{ etc...} \)
- Picarro: closed path cavity ring down
 \(\text{CH}_4, \text{CO}, \text{CO}_2, \text{H}_2\text{O} \text{ etc...} \)
- Los Gatos: closed path ICOS
 \(\text{CH}_4, \text{CO}, \text{CO}_2, \text{N}_2\text{O}, \text{H}_2\text{O} \text{ etc...} \)
Laser spectroscopy

- Open path multipass cell instrument

 - LI-7700 (CH₄)
 - no need for external pump;
 - low power requirement;
 - no need for reference gas;
 - user friendly; no time lag;
 - spectroscopic correction
Laser spectroscopy

- Closed path cavity ring down

- Picarro (CO₂/H₂O/CH₄/CO, etc.)
 - requires an external pump;
 - needs mains power;
 - no need for reference gas (reference capsule inside);
 - tube attenuation; lag time;
Laser spectroscopy

- Closed path integrated cavity output ICOS

 - Los Gatos (CH₄, CO, CO₂, N₂O, H₂O etc.)
 - requires an external pump;
 - needs mains power (a massive generator does it too);
 - no need for reference gas;
 - tube attenuation;
Instruments for aerosol particle flux

- **Condensation particle counter (CPC)**
 small particles magnified by growing with condensation
 detects large particles by light scattering

- **Optical particle counter (OPC)**
 detects large particles directly by light scattering

- **Aerosol mass spectrometer (AMS)**
 sampling frequency typically slow ~ 1 Hz

Figures: Grimm Aerosol Technik
Other gas analysers

- Chemical ionization mass-spectrometers
 - PTR-quad-MS: slow detection of VOCs
 - PTR-ToF-MS: fast detection of VOCs
- Chemi-luminescence
- Photoacoustic spectroscopy (PAS)
- Fourier transform infrared spectroscopy (FTIR)
- Conventional chromatographical methods (GC-FID)
Power requirements and supply
(getting down to business...)

- Short-/long-term data collection;
- Continuous recording or sampling of data;
- 5 V, 12 V, 24 V, 220 V/110 V required?

- Car batteries, solar panels, wind energy, generator, mains power;
Power supply

- Car batteries (additional power source):
 - frequent replacement;
 - ideal for short term studies;
 - easy to use but bloody heavy if needs to be carried around;

- Solar panels:
 - site location;
 - adequate supply all year round?
 - charge controller and battery units;
 - easy to use (once you know how it works);
Power supply

- Wind energy:
 - Site location;
 - adequate supply?
 - charge controller and battery units;
 - location (footprint location);
 - easy to use;

- Fuel generator:
 - location (footprint location);
 - frequent refuelling of petrol, hydrogen, diesel, etc.;
 - charge controller and battery units;
Power supply

- Mains power:
 - Site location;
 - distance to nearest transformer (Voltage drop);
 - easy to use (and convert to lower Voltage);
 - No limitation of supply to instruments all year round;
 - Expensive if newly established;
 - Running costs;
 - power surges(?)
Site establishment
(Quality Assessment/Quality Control)

- purpose of study and choice of ecosystem
 - end user of data;
- site location, land ownership and access
 - are we measuring in the right location? Pilot project;
- length of data collection (campaign/permanent)
 - end user of data; purpose of measurement;
- data expectations (flux magnitude)
 - why are the measurements carried out? Use of correct measurement protocols;
Site infrastructure

- Ecosystem relevant structure;
- Access;
- Safety;
- Protection;
- Housing;
- Data management;
- Set-up selection
Decision time

- Open- vs. closed-path analyser;
 - data quality (dry/wet);
 - power requirements (mains/batteries);
 - cleaning (filter/open window)
 - reference gas requirement (gas cylinders, synth. air);
 - necessity of a pump;
 - data storage
 - costs (purchase & running costs);
And what now???

- Once site is up and running...
 - Calibration checks;
 - frequent data control (to avoid instrument drift, power failure, filter clogging, pump failure, underestimated data storage, drop outs, etc.);
 - instrument and site maintenance;
 - (reference gas checks);
Calibration and calibration checks

- A **calibration check** refers to a procedure where instrument readings are compared to a set of well known concentrations (including zero)
 - difference is quantified for correction during post processing
- A **calibration** refers to the re-adjustment of an instrument to read correct “zero” and “span” values, often 0 and 400/500 ppm CO₂.
 - alternatively, the instrument can be tuned to show correct value on-site or taken to home institute for calibration (LI-7000); !!! LI-6262!!!
- Open path instruments need their respective “calibration shroud”;
- A calibration should never be done in rainy weather!
- Time consuming;
- Always read manual prior to proceed;
Calibration and calibration checks

- EC not very sensitive to zero drift (offset error) but span drift (gain error) will bias your flux data;

- calibration intervals instrument specific

- IRGAs typically need calibration every 1 – 6 months

- laser spectroscopic instruments are more stable: calibration interval ~ 1 year

However, dirt accumulation, instrument failure etc. may lead severe drift any time!
Eddy system maintenance (cleaning)

- EC setup running 24/7 typically collects ~1-10 mio l air per year
- dirt load varies heavily depending on location:
 - urban / rural
 - pollen period
 - forest fires
 - agricultural activity
- Filters and inlet tubes: - capacity and filtering efficiency affects it’s lifetime as filter areas cover 10 - 1000 cm2 and pore sizes often vary between 0.1 - 10 μm;
- Depending on filter type and costs, they need to be exchanged up to 1/month...
- Gelman filter vs. Filter holder & paper;
Why all this cleaning?

- If filters are located downstream of the tubing, also the tube walls become dirty (often even sticky...);
- Dirt on tube walls affects heavily H$_2$O, potentially also other gases;
- Consider cleaning / changing tubes occasionally;

- **Conclusion:** the cleaner you keep your system and the better you maintain your system the **higher quality** data you will have (technical point of view)!
How communicative are these systems?

- Instruments give technical diagnostics (pressures, temperatures, indicators about the optical path condition (LI-7700/LI-7200);
- The measurement data itself often gives indication whether the data was good (spikes, outliers);
- In some cases only the post-processed data can indicate problems (lag time, spectra, instrument orientation, etc.)