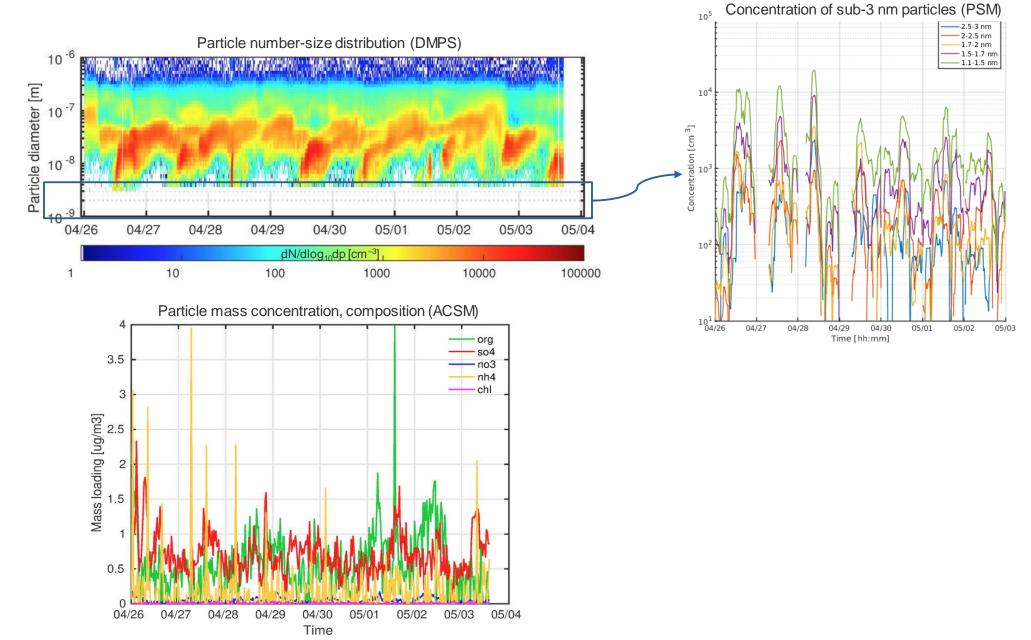

SmartSMEAR, boreal forest measurements and database

Air-CAS – INAR Data Workshop, 4 May 2022

Tuomo Nieminen

Institute for Atmospheric and Earth System Research University of Helsinki

Over 1200 different variables


Flagship site for integration: combines all IPCC components. Contributes to :

Measurements at Hyytiälä SMEAR II Aerosol

- Particle number size-distributions in several size ranges
 - 3–1000 nm (DMPS, since 1996)
 - 0.8–40 nm (air ions, AIS+NAIS, since 2003)
 - 2 40 nm (total particles, NAIS, since 2006)
 - ~1–3 nm (total particles, PSM)
- Atmospheric clusters and their composition
 - mass spectrometers measuring upto ~1000 amu (APi-TOF, from 2009 campaigns; continuous since 2016)
- Particle mass concentration
 - particle mass (PM2.5, PM10), optical properties (scattering, backscattering, absorption)
 - particle chemical composition (ACSM)
- Particle fluxes

Measurements at Hyytiälä SMEAR II Aerosol

Measurements at Hyytiälä SMEAR II Ecosystem

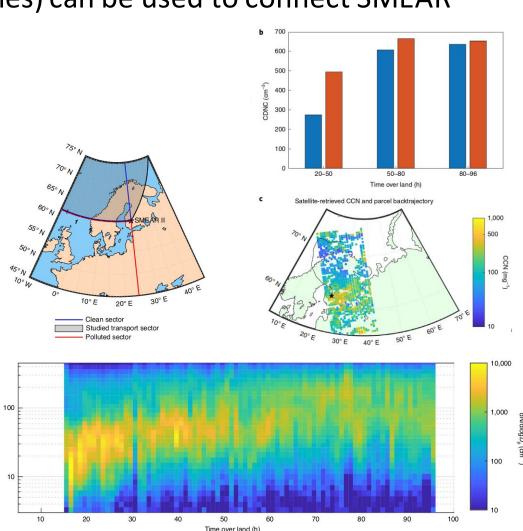
- Photosynthesis and respiration (CO2 and H2O fluxes)
 - ecosystem level (eddy covariance, on top of forest canopy)
 - branch level (shoot chambers)
 - soil respiration and ground vegetation photosynthesis, soil temperature, soil moisture
- Ecosystem level CH4 fluxes
- Volatile organic compounds (VOC)
 - concentrations (PTR-MS)
 - ecosystem level fluxes (gradient from the mast)
 - emissions from the tree branches (cuvettes)
 - soil VOC emissions (chambers)

Measurements at Hyytiälä SMEAR II Remote sensing: vertical profiles, cloud properties

- Cloud remote sensing
 - Doppler Cloud Radars (campaigns 2014, continuous from 2016)
 - Doppler Lidar (vertical profile of backscattering)
 - Microwave radiometer
 - Near realtime data available through Cloudnet, https://cloudnet.fmi.fi/
- Aerosol optical depth (total column, sun photometer, Aeronet)

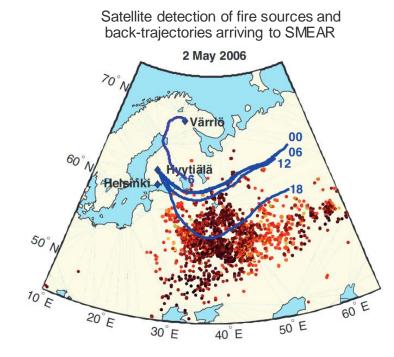
Measurements at Hyytiälä SMEAR II Meteorology, atmospheric trace gases

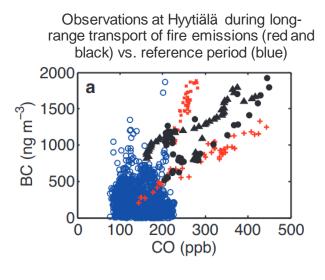
- Meteorology, solar radiation
 - air temperature, RH, precipitation
 - wind speed/direction; airmass back-trajectories
 - solar radiation: global, UV-B, photosynthetically active (PAR), diffuse and direct radiation
 - boundary layer height
- Inorganic trace gas concentrations
 - SO2, O3, NOx, CO, CH4, CO2


Measurements at Hyytiälä SMEAR II Connecting local measurements with airmass transport and satellite observations

Airmass history (back-trajectories) can be used to connect SMEAR data to emission sources, airmass transport patterns, time-over-land, etc.

с


Diameter


 Contribution of regional boreal forest emissions on aerosol formation and production of CCN

Measurements at Hyytiälä SMEAR II Connecting local measurements with airmass transport and satellite observations

• Detecting long-range transport of forest fire emissions

Leino et al., Boreal Env. Res., 2014

Datasets from Hyytiälä SMEAR II

- Most of the data is openly available in SmartSMEAR
 - https://smear.avaa.csc.fi/
 - data visualization and download tool for the database of continuous measurements at all SMEAR research stations (graphical user interface to the SMEAR data)
 - API provides access to all variables and metadata
 - data access can be done directly from your analysis tools (Matlab, Python, R)
- Additional datasets available from campaigns through Datacloud (access by request)
 - derived variables
 - analysis results

About Preview Download	API	Terms Of Us	se	Contact	INAR SMEAR IV			
Station SMEAR I Nuorttiaapa wetland SMEAR I Värriö forest				Filter:	Variable Description	Source		
SMEAR II Hyyttälä forest SMEAR II Lake Kuivajärvi SMEAR II Siikaneva 1 wetland SMEAR II Siikaneva 2 wetland SMEAR II Helsinki Erottaja Fire Station SMEAR III Helsinki Hotel Torni				Variable	Description	Source	Availability %	Download
				Air pressure (ground)	Atmospheric pressure at ground level (180 m a.s.l.)	Druck DPI 260 barometer	70.9	Download
SMEAR III Helsinki Kumpula SMEAR IV Puijo tower Select variable category				Air pressure (35 m)	Atmospheric pressure at 33.6 m nominal height in the mast (about 215 m a.s.l.)	Vaisala PTB210 barometer	70.9	Download
Meteorology Date Range 2022-05-03 → 2022-05-04	~			Air temperature 67.2 m	Air temperature at 67.2 m height measured with Pt100 inside ventilated custom-made radiation shield	Pt100 inside custom shield	70.9	Download
Processing Level ANY Averaging	×			Air temperature 50.4 m	Air temperature at 50.4 m height measured with Pt100 inside ventilated custom-made radiation shield	Pt100 inside custom	70.9	Download

References

Heikkinen, L., et al.: Long-term sub-micrometer aerosol chemical composition in the boreal forest: inter- and intra-annual variability. *Atmos. Chem. Phys.* 20, 3151–3180, 2020

Kulmala, M., et al.: CarbonSink+ — Accounting for multiple climate feedbacks from forests. *Boreal Env. Res.* 25, 145–159, 2020

Launiainen, S., et al: Does growing atmospheric CO2 explain increasing carbon sink in a boreal coniferous forest? *Glob. Change Biol.* 28, 2910–2929, 2022

Leino, K., et al.: Biomass-burning smoke episodes in Finland from eastern European wildfires. *Boreal Env. Res.* 19 (suppl. B): 275–292, 2014

Luoma, K., et al.: Over a 10-year record of aerosol optical properties at SMEAR II. *Atmos. Chem. Phys.* 19, 11363–11382, 2019

References

Neefjes, I., et al.: 25 years of atmospheric and ecosystem measurements in a boreal forest — Seasonal variation and responses to warm and dry years. *Boreal Env. Res.* 27: 1–31, 2022

Nieminen, T., et al.: Trends in atmospheric new-particle formation: 16 years of observations in a boreal-forest environment. *Boreal Env. Res.* 19 (suppl. B): 191–214, 2014

Petäjä, T., et al.: Influence of biogenic emissions from boreal forests on aerosol–cloud interactions. *Nat. Geosci.* 15, 42–47, 2022

Riuttanen, L., et al.: Trajectory analysis of atmospheric transport of fine particles, SO2, NOx and O3 to the SMEAR II station in Finland in 1996–2008. *Atmos. Chem. Phys.* 13, 2153–2164, 2013