Process-based fine scale modelling for meteorology-chemistry-aerosol system

ELVOC

(Extreme-Low Volatile Organic Compounds)

A large source of low-volatility secondary organic aerosol (Ehn et al., Nature, 2014)

Formation of highly oxidized multifunctional (HOM; O:C≥0.7) organic compounds by autoxidation of monoterpenes (MT)

$$\begin{split} & \text{MT} \left(\text{C}_{10} \text{H}_{16} \right) + \text{O}_{3} \not\Rightarrow \gamma \text{C}_{10} \text{H}_{15} \text{O}_{2} \text{-} \text{OO} \cdot & (\gamma = 9 \% \text{ for } \alpha \text{-pinene}) \\ & \text{C}_{10} \text{H}_{15} \text{O}_{2} \text{-} \text{OO} \cdot \xrightarrow{\text{H-shift} + \text{O}_{2}} \text{C}_{10} \text{H}_{15} \text{O}_{4} \text{-} \text{OO} \cdot & (1^{\text{st}} \text{H-shift} + \text{O}_{2}) \\ & \text{C}_{10} \text{H}_{15} \text{O}_{4} \text{-} \text{OO} \cdot \xrightarrow{\text{H-shift} + \text{O}_{2}} \text{C}_{10} \text{H}_{15} \text{O}_{6} \text{-} \text{OO} \cdot & (2^{\text{nd}} \text{H-shift} + \text{O}_{2}) \\ & \text{C}_{10} \text{H}_{15} \text{O}_{6} \text{-} \text{OO} \cdot \xrightarrow{\text{H-shift} + \text{O}_{2}} \text{C}_{10} \text{H}_{15} \text{O}_{8} \text{-} \text{OO} \cdot & (3^{\text{rd}} \text{H-shift} + \text{O}_{2}) \\ & \text{C}_{10} \text{H}_{15} \text{O}_{8} \text{-} \text{OO} \cdot \xrightarrow{\text{H-shift} + \text{O}_{2}} \text{C}_{10} \text{H}_{15} \text{O}_{10} \text{-} \text{OO} \cdot & (4^{\text{th}} \text{H-shift} + \text{O}_{2}) \end{split}$$

Reactions terminating the autoxidation, leading to formation of stable HOMs:

$$\begin{split} & C_{10}H_{15}O_{x}-OO\cdot + HO_{2} \rightarrow C_{10}H_{15}O_{x}-OH \\ & C_{10}H_{15}O_{x}-OO\cdot + RO_{2} \not\rightarrow \alpha \cdot C_{10}H_{15}O_{x}-OH + \beta \cdot C_{10}H_{14}O_{x} = 0 + \gamma \cdot C_{10}H_{15}O_{x}-O\cdot + (1-\alpha-\beta-\gamma) \cdot C_{20}H_{30}O_{x+4} \\ & C_{10}H_{15}O_{x}-OO\cdot + NO \rightarrow \alpha \cdot C_{10}H_{15}O_{x}-ONO_{2} + \beta \cdot C_{10}H_{14}O_{x} = 0 + \gamma \cdot C_{10}H_{15}O_{x}O\cdot + (1-\alpha) \cdot NO_{2} \\ & C_{10}H_{15}O_{x}OO\cdot \rightarrow C_{10}H_{15}O_{x}OH \end{split}$$

We have developed a HOM mechanism that comprise 1773 reactions and 208 new compounds.

The mechanism has been coupled to the Master Chemical Mechanism v 3.3

ARTICLE

https://bilarg/10.000/velled-che-laboration

The role of highly oxygenated organic molecules in the Boreal aerosol-cloud-climate system

Pontus Roldino¹⁺, Mikael Ehno², Theo Kurtén³, Tinja Olenius⁴, Matti P. Rissanen², Nina Samela², Jonas Elmo⁵, Pekka Rantala², Liging Hao⁵, Noora Hyttineno⁷, Line Hekkineno², Douglas R. Worsnop^{3,8}, Lukas Pichelstorfer^{2,9}, Carlton Xavier⁶, Petri Clusius², Emile Öström¹, Tuukka Petäjä¹, Markku Kulmala², Hanna Vehkamäki⁶, Annele Virtanen⁶, Ilona Ripinen⁴ & Michael Boy⁶, ²

Highly oxygenated organic molecule (HOM) formation from α-pinene. Modelled and measured HOM(g) concentrations during a JPAC α-pinene ozonolysis experiment

Highly oxygenated organic molecule (HOM) gas-particle partitioning. Model and measurement results from an α -pinene ozonolysis experiment with ammonium sulfate (AS) seed particles.

Highly oxygenated organic molecules (HOM) in the boreal forest. Modelled and measured HOM gasphase concentrations at the Station for Measuring Ecosystem-Atmosphere Relations II (SMEAR II) between 15 and 24 May 2013.

Measured and modelled particle number concentrations at the SMEAR II (Hyytiälä, Finland)

Upper plot: measurements Lower plot: model

Roldin et al., Nature communication, 2019

Average non-refractory submicron particle chemical composition

Left plot: measurements Right plot: model

Roldin et al., Nature communication, 2019

ARTICLE

nps://dsl.org/10.1038/s41467-019-12338-8 OP

The role of highly oxygenated organic molecules in the Boreal aerosol-cloud-climate system

Pontus Roldin[®]¹*, Mikael Ehn[®]², Theo Kurtén³, Tinja Olenius⁴, Matti P. Rissanen², Nina Sarnela², Jonas Elm[®]⁵, Pekka Rantala², Liqing Hao⁶, Noora Hyttinen[®]⁷, Line Heikkinen[®]², Douglas R. Worsnop^{2,8}, Lukas Pichelstorfer^{2,9}, Carlton Xavier[®]², Petri Clusius², Emilie Öström¹, Tuukka Petäjä[®]², Markku Kulmala², Hanna Vehkamäki[®]², Annele Virtanen⁶, Ilona Riipinen⁴ & Michael Boy[®]²

Modelled top of the atmosphere direct aerosol radiative forcing probability distributions caused by new particle formation (NPF) and HOM secondary organic aerosol (HOM SOA) formation, during clear sky conditions.

Schematic of the original Continental-Biosphere-Aerosol-Cloud-Climate feedback loop (CoBACC; Kulmala et al. 2014) denoted by black boxes and connecting lines, and the additional CoBACC loop based on the new results from Roldin et al. (2019) denoted by red boxes and connecting lines and the anthropogenic impact in blue circles (SOA = secondary organic aerosols, CCN = cloud condensation nuclei, CDNC = cloud droplet number concentration, Pr. Part. = primary particles).