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Particles methods for ocean 

research
• Interpretation of measurement results 

(trajectory analysis, estimation of 
velocities, temperature, salinity, 
turbulence, trajectories of moving water 
masses, finding special points, 
migration of biological objects)

• Modeling for forecasting and analysis 
of the state of the environment 
(pollution distribution, risk assessment, 
statistics of possible scenarios, finding 
sources, finding stagnant zones)

Near 100 papers per year titled «Lagrangian ocean modelling» Van Sebille, 2018



Solution of transport problem by 

Lagrangian method

• The Lagrangian approach is more natural because it describes the motion of a continuous 
medium as the movement of individual material particles

• Lagrangian methods allow us to describe multiple-scale processes

• Lagrangian methods are conservative by definition.

• Lagrangian methods make it possible to track the trajectory of each particle

• Simple and effective parallelization

-equation for the particle trajectory

Issues:

• Smoothness

• Visualization

• Phase transitions

• Boundary conditions

• Stochastic methods



Equation of advection-diffusion-reaction

𝑑𝐶𝑖
𝑑𝑡

= −𝛻 ∙ 𝑢𝑖𝐶𝑖 + 𝛻 ∙ D𝛻C𝑖 +෍

𝑗=1

𝑛

𝛼𝑖𝑗𝐶𝑗 + 𝑅𝑖

𝐶𝑖 - concentration of material i

𝑢𝑖 - flow velocity

𝐷 = (𝐷𝑥, 𝐷𝑦, 𝐷𝑧) – diffusion coefficient

𝛼𝑖𝑗 - kinetic transfer coefficients or reaction, sorption, decay.

𝑅𝑖 - sources/sinks

advection diffusion

reaction
sorces



Advection of particles

𝑑𝐶

𝑑𝑡
= −𝛻 ∙ 𝑢𝐶 - eulerian equation

dx
u

dt
= Equivivalent lagrangian trajectory equation

Euler 1st order numerical method:
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Derivation:

Taylor expansion



Diffusion modelling
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1D diffusion equation
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p p
D
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 
1D Fokker-Plank equation for the probability distribution

2dx DdW= -stochastic process equivalent to the Fokker-Plank equation

W -Wiener process

( ) ( ) 2x x t t x t R D t = +  − =  -numerical algorithm of random walk

(0,1)R N= -normally distributed random number with zero mean and 

unit standard deviation
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Particles phase transformations (reaction)

• Adsorption-desorption

• Decay

• Chemical reaction

• Boundary conditions

• …..
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Solving the Kolmogorov equation
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Modelling of decay process using 

particles
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Decay equation

Kolmogorov equation
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Graph 

of decay



Bottom boundary conditions:

Resuspension of particulated particles
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Settling algorithm
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Transport processes

• Spreading

• Advection

• Horizontal and vertical 

turbulent dispersion

• Oil-shore interaction

Weathering processes

• Evaporation

• Entrainment in water

• Emulsification

• Dissolution

• Sedimentation
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Oil transport and fate model 

OILTOX
OILTOX is Lagrangian model to simulate oil transport and fate 
in four interacted phases: 
oil-on-surface, oil-in-water, oil-on-bottom, oil-at-shoreline

Model numerical features
-Lagrangian algorithm for particle tracking
-3D Random Walk method for turbulent diffusion of oil 
droplets
-2D SPH method for solving shallow water equation for the 
gravitational spreading of surface oil slick
-Solves Kolmogorov equation for the probability of particle 
evaporation



Oil Spill Analysis WesPac Pittsburg 

Energy Infrastructure (San-Francisco 

bay)

WesPac Marine 

Terminal
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Example spill trajectory 

for a winter OILTOX 

simulation at three 

different times

For each of the 12 modeling scenarios, 

100 individual oil spills occurring during 

winter and 100 individual oil spills 

occurring during summer were simulated 

with the OILTOX model, for a total of 

2,400 oil spill modeling runs



Sediment transport modelling
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Modeling of sediment transport from 

dredging areas and dumping sites in 

the Danube Delta (Bystry Reach)



Sediment transport from dredging area in the 

Danube delta
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sand fraction mud fraction



Modelling allows to optimize place and intensity of dumping to 

satisfy restrictions on the transboundary transport of 

sediments
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Modeling of transport of sediments 

from mining pits in the San-Francisco 

Bay

USED MODELS

•3d hydrostatic model 

SELFE

•2D lagrandian sediment 

transport model



Modeling of transport of sediments from 

sand mining pits in the San-Francisco Bay

19
Colored particles originate from different mining areas



Large scale lagrangian modelling of 137Cs 
concentration after the Fukushima accident
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3D lagrangian random walk algorithm

Radioactive decay

Atmospheric deposition and direct release of 137Cs

Parallel algorithm, 300M particles



Conclusions

• Lagrangian methods is powerful tool to analyse the output of 
ocean circulation models

• A generalized probabilistic approach was developed to simulate 
transitions of particles between different states (e.g. radioactive 
decay, adsorption. Interaction with surface or bottom, droplets 
breakup)

• Lagrangian models of oil spill transport, sediments and 
radionuclide transport were developed verified and applied for 
a number of problems
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