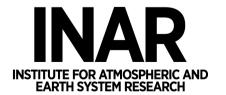


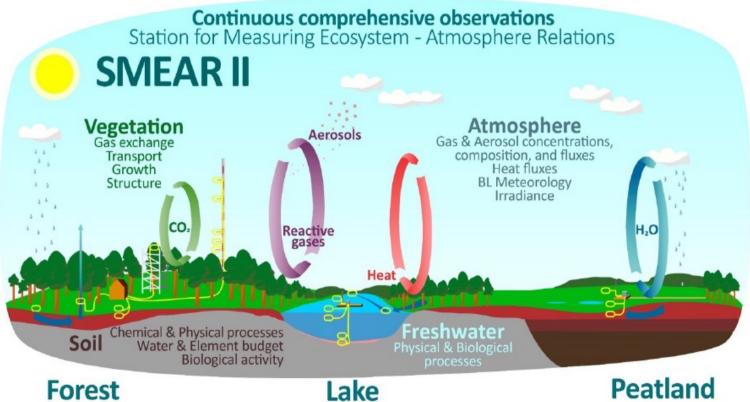
PEEX Collaboration - Online Workshop


Institute for Atmospheric and Earth System Research, University of Helsinki & Institute of Mathematical Machines and Systems Problems, National Academy of Sciences (UHEL-INAR & IMMSP-NAS)

SMEAR (Station for Measuring Ecosystem— Atmosphere Relation) concept & measurements

Tuukka Petäjä and collaborators

6.6. 2024

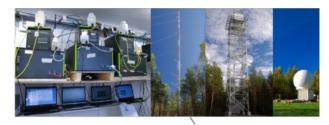


SMEAR II station in Hyytiälä, Finland

Over 1200 different variables

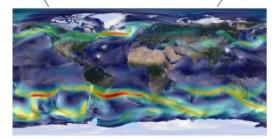
Flagship site for integration: combines all IPCC components.

Contributes to:



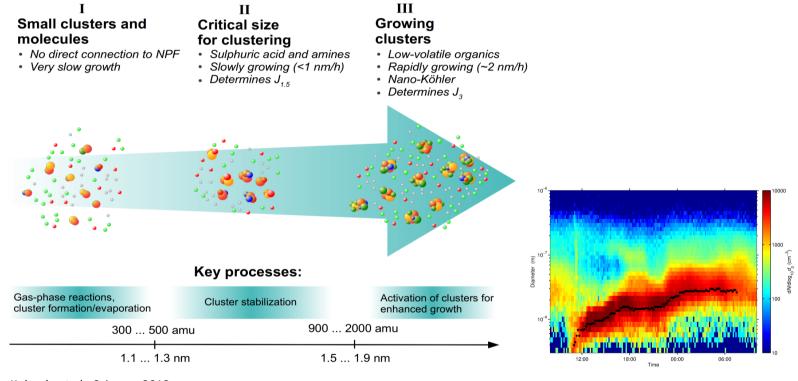
GROUND-BASED

4D TARGETED CHEMICAL & MICROPHYSICAL DETAIL POINT-LOCATION TIME SERIES


FREQUENT, GLOBAL SNAPSHOTS; E.G. AEROSOL AMOUNT & AEROSOL TYPE MAPS, PLUME &

MODEL VALIDATION

PARAMETERIZATIOS CLIMATE SENSITIVITY UNDERLYING MECHANISMS


SPACE-TIME INTERPOLATION. **CALCULATION & PREDICTION**

Overview: Integrative and Comprehensive Understanding on Polar Environments (iCUPE) – concept and initial results

Tuukka Petäjä¹, Ella-Maria Duplissy¹, Ksenia Tabakova¹, Julia Schmale^{2,3}, Barbara Altstädter⁴, Gerard Ancellet⁵, Mikhail Arshinov⁶, Yurii Balin⁶, Urs Baltensperger², Jens Bange⁷, Alison Beamish⁸, Boris Belan⁶, Antoine Berchet⁹, Rossana Bossi¹⁰, Warren R. L. Cairns¹¹, Ralf Ebinghaus¹², Imad El Haddad², Beatriz Ferreira-Araujo¹³, Anna Franck¹, Lin Huang¹⁴, Antti Hyvärinen¹⁵, Angelika Humbert¹6.17, Athina-Cerise Kalogridis¹8, Pavel Konstantinov¹9.30, Astrid Lampert⁴, Matthew MacLeod²⁰, Olivier Magand²¹, Alexander Mahura¹, Louis Marelle^{5,21}, Vladimir Masloboev²², Dmitri Moisseev¹, Vaios Moschos², Niklas Neckel¹⁶, Tatsuo Onishi⁵, Stefan Osterwalder²¹, Aino Ovaska¹, Pauli Paasonen¹, Mikhail Panchenko⁶, Fidel Pankratov²², Jakob B. Pernov¹⁰, Andreas Platis⁷, Olga Popovicheva²³, Jean-Christophe Raut⁵, Aurélie Riandet⁹, Torsten Sachs⁸, Rosamaria Salvatori²⁴, Roberto Sabzano²⁵, Ludwig Schröder¹⁶, Martin Schön⁷, Vladimir Shevchenko²⁶, Henrik Skov¹⁰, Jeroen E. Sonke¹³, Andrea Spolaor¹¹, Vasileios K. Stathopoulos¹⁸, Mikko Strahlendorff¹⁵, Jennie L. Thomas²¹, Vito Vitale¹¹, Sterios Vratolis¹⁸, Carlo Barbante^{11,27}, Sabine Chabrillat⁸, Aurélien Dommergue²¹, Konstantinos Eleftheriadis¹⁸, Jyri Heilimo¹⁵, Kathy S. Law⁵, Andreas Massling¹⁰, Steffen M. Noe²⁸, Jean-Daniel Paris⁹, André S. H. Prévôt², Ilona Riipinen²⁰, Birgit Wehner²⁹, Zhiyong Xie¹², and Hanna K. Lappalainen^{1,15}

Atmospheric nucleation / clustering processes

Kulmala et al., Science, 2013

Environmental Research Letters

Environ. Res. Lett. 13 (2018) 103003

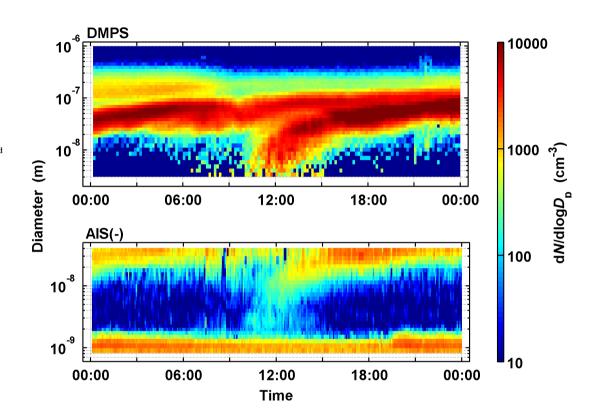
TOPICAL REVIEW

Atmospheric new particle formation and growth: review of field observations

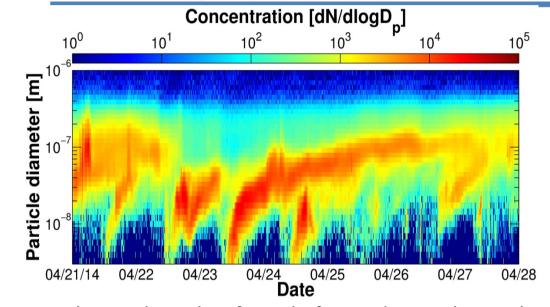
Veli-Matti Kerminen¹ ⊙, Xuemeng Chen¹, Ville Vakkari², Tuukka Petäjä¹, Markku Kulmala¹,³,⁴ and Federico Bianchi¹³

Atmospheric new particle formation in China

Biwu Chu¹, Veli-Matti Kerminen¹, Federico Bianchi^{1,2}, Chao Yan¹, Tuukka Petäjä^{1,3}, and Markku Kulmala^{1,3}


Atmos. Chem. Phys., 19, 115-138, 2019

Key compounds for initial clustering


Sulfuric acid
Ammonia
Amines
Oxidized organics
Iodic acid (marine, Arctic)

Key compounds for the growth

Oxidized organics
MSA (marine)
+ other vapors above
Considerable variability from one location to another

Science Plan - Biogenic Aerosols- Effects on Clouds and Climate (BAECC)

- From Emissions to Aerosols
- 2. From Aerosols to Clouds
- 3. From Clouds to Precipitation
- 4. Feedbacks and Interactions
- What is the role of newly formed particles in the cloud activation *in-situ*?
- Do they alter the cloud properties / precipitation?

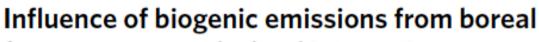
Petäjä, T. (2013) Science Plan Biogenic Aerosols – Effects on Clouds and Climate (BAECC), US Department of Energy, Office of Science, DOE/SC-ARM-13-024.

The Atmospheric Radiation Measurement (ARM) Climate Research Facility is a U.S. Department of Energy scientific user facility, providing data from strategically located in situ and remote sensing observatories around the world.

ARM Mobile Facility 2 in Hyytiälä, Finland, February 2014 – September 2014

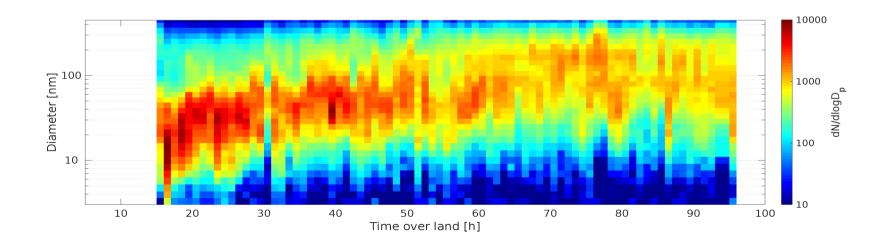
Goal: To understand the impact of biogenic aerosol formation on cloud properties and climate

Tools: Aerosol Observing system (AOS), Balloon-borne sounding system, laser distrometer, micropulse lidar, microwave radiometer, high spectral resolution lidar, Scanning W-band and Ka-band cloud radars (SWACR, M-WACKR, Ka-band zenith radar (KAZR)

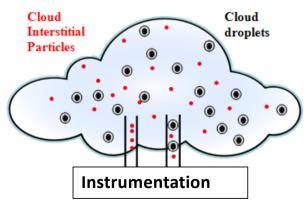

Principal investigator: Tuukka Petäjä, UHEL

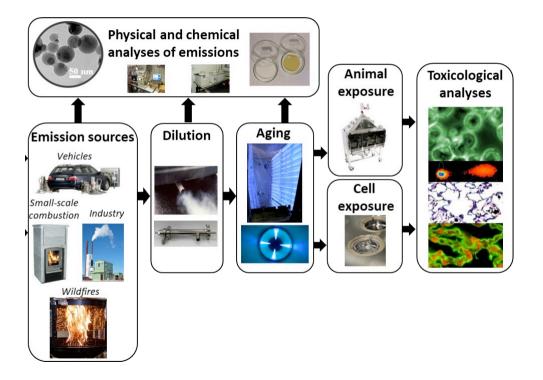
BAECC A FIELD CAMPAIGN TO ELUCIDATE THE IMPACT OF BIOGENIC AEROSOLS ON CLOUDS AND CLIMATE

Petäjä et al. (2016) Bull. Am. Met. Soc. 97, 1909-1928, https://doi.org/10.1175/BAMS-D-14-00199.1



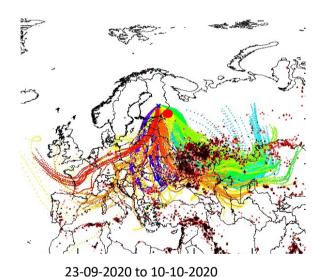
forests on aerosol-cloud interactions

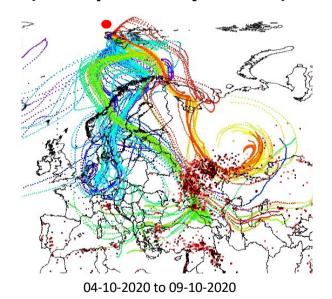

T. Petäj䮹²™, K. Tabakova®¹, A. Manninen¹³, E. Ezhova®¹, E. O'Connor®³⁴, D. Moisseev®¹³, V. A. Sinclair®¹, J. Backman®¹³, J. Levula¹, K. Luoma¹, A. Virkkula®¹²³, M. Paramonov¹³, M. Räty®¹, M. Äijälä¹, L. Heikkinen®¹, M. Ehn®¹, M. Sipilä¹, T. Yli-Juuti®⁵, A. Virtanen⁵, M. Ritsche⁶, N. Hickmon⁶, G. Pulik², D. Rosenfeld®², D. R. Worsnop¹³, J. Bäck®³, M. Kulmala¹²²¹⁰¹¹ and V.-M. Kerminen¹


ACTRIS FACILITIES

 Puijo SMEAR IV: Aerosol & Cloud in-situ: Aerosol in-situ entered to labelling phase

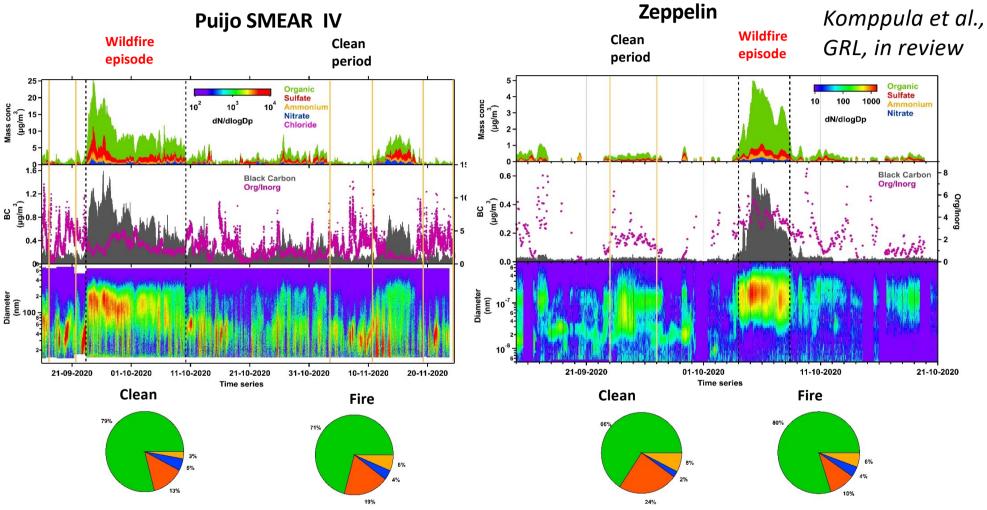
- Atmospheric simulation chambers KASC EASTERN FINLAND EUROCHAMP & ATMO-ACCESS
- 2 simulation chambers, ILMARI for comprehensive emission studies




Back trajectories – wildfire episode

• Fires at South-Eastern Europe (mainly grass land fires)

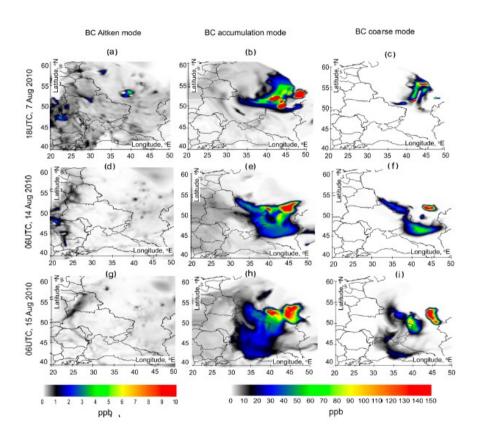
SMEAR IV, Finland: plume age 2-3 days (5-day back trajectories)



Zeppelin Observatory, Svalbard, Arctic: plume age 3-5 days (10-day back trajectories)

Komppula et al., GRL, in review

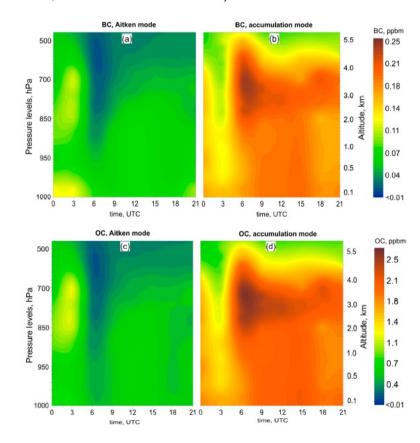
Long range transported wild fire plume observed at Puijo & Zeppelin



Fraction of Inorganics increased during Wildfire episode

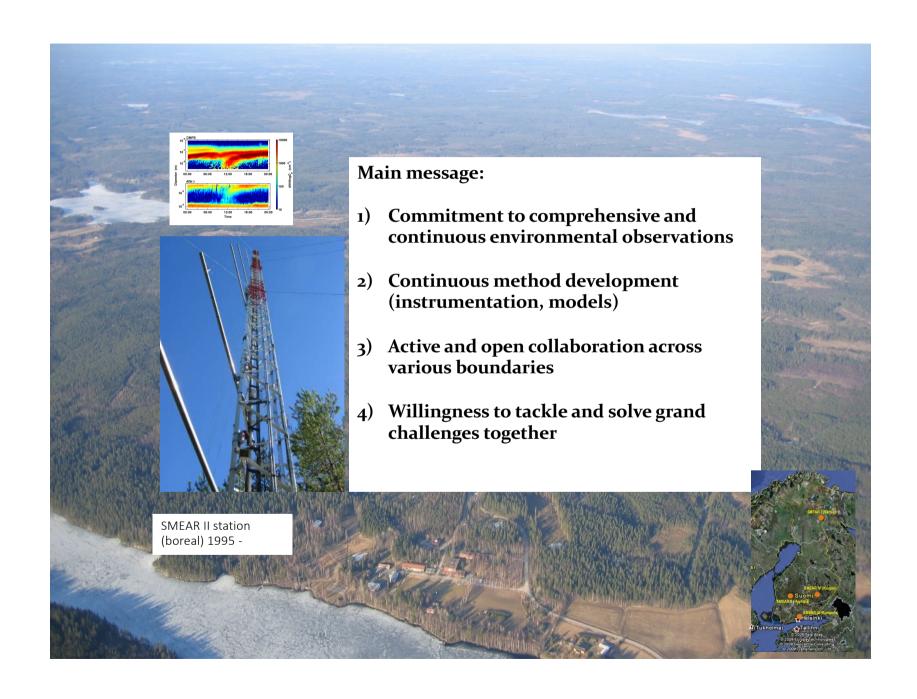
Fraction of Inorganics decreased during Wildfire episode

Enviro-HIRLAM model estimates of elevated black carbon pollution over Ukraine resulted from forest fires


Mykhailo Savenets¹, Larysa Pysarenko¹, Svitlana Krakovska¹, Alexander Mahura², and Tuukka Petäjä²

Article

Seamless Modeling of Direct and Indirect Aerosol Effects during April 2020 Wildfire Episode in Ukraine


Mykhailo Savenets ^{1,*}¹⁰, Valeriia Rybchynska ^{1,2}, Alexander Mahura ³¹⁰, Roman Nuterman ⁴¹⁰, Alexander Baklanov ^{4,5}¹⁰, Markku Kulmala ³ and Tuukka Petäjä ^{3,*}

Contact:

Prof. Tuukka Petäjä, University of Helsinki tuukka.petaja@helsinki.fi +358 50 41 55 278

Support from University of Helsinki, Academy of Finland, European Commission, Regional Council of Lapland, Helsinki-Uusimaa Regional Council, Technology industries of Finland Centennial Foundation, Jane and Aatos Erkko foundation and Business Finland are gratefully acknowledged.