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Background and Motivation

® Urban tunnels face complex challenges: high pollution, enclosed spaces, and limited evacuation capacity.

® Traditional ventilation and safety systems are outdated and rely on experience-based control.
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® This project addresses the urgent need for intelligent, lifecycle-based tunnel environmental and safety management.

® Goals include predictive modeling, smart ventilation control, and personalized emergency response systems.



Innovation 1 - Predicting Tunnel Environmental Parameters

High-Accuracy Prediction of Traffic Wind and Pollutant Dynamics

® Developed a high-precision model for tunnel airflow

Model-Predicted VEC

("traffic wind") and pollutant dispersion.
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® Introduced a vehicle canopy theory-based turbulence

model validated by wind tunnel tests.

® Proposed a model for ultrafine particle dynamics with over

50% accuracy improvement.

Prediction model of traffic wind and
vehicle drag coefficient variation



Wind Tunnel Study — Background and Motivation

® Vehicle-induced turbulence (VIT) plays a major role in 2w _ (1)

dz;
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computation cost. To address this, we conduct wind
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Wind Tunnel Study — Methodology

O Using wind tunnel experiments, we investigated the impact of vehicle-related factors on

tunnel ventilation rates.
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Wind Tunnel Study — Cases and Results

O Cases can be divided into two groups: investigate the impact of single-height fleets and mixed-height fleets on

tunnel ventilation.
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O The vehicle-related factors we considered included tunnel

length, vehicle height, proportion, and vehicle number.



Wind Tunnel Study - Key Findings and VEC Prediction

® A multiple linear regression model was established:
VEC = -0.371AH* — 0.091SD* - 0.008VR - 0.019VS* + 0.584

(R2 = 0.96). Prediction error was within 5%.

® The equivalent average height of mixed convoys was estimated as:

VH* = 0.979AH* + 0.24SD* + 0.039.
This allows simplified modeling using uniform-height fleets,
significantly reducing computation time.
® Combined with pressure loss equations:
AP=0.5p (1 - VEC ?) U2

This supports improved tunnel ventilation design.

Where VEC is the tunnel ventilation efficiency coefficient, AH* is the average
height of vehicles in the convoy, SD* is the height variation, VR is the number of
vehicle rows, VS* is the vehicle spacing ratio (spacing divided by vehicle length),
and AP is the pressure difference caused by the vehicle convoy.
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Innovation 1 — Construction and Operation Phase Models
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Rapid Spatiotemporal Identification of Environmental

Parameters
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® ARIMA and CFD-based models for time-space prediction of

heat, humidity, and pollutants during construction. Both “’”””””*“**gg’”—’-@Wigmgg
. . Time series prediction model of typical pollutants
models achieved <10% error compared to field data. it sl
—
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® Proposed a tunnel-vehicle air quality coupling model to y ()
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capture non-uniform pollutant behavior during operation. \@P I ?%1
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Tunnel-vehicle pollutant coupling diffusion model

fitting accuracy R? = 0.95.



Innovation 2 - Human Activity and Pollutant Spread

Modeling Pollutant Dispersion under Human Movement

® Built a fast, accurate model for pollutant spread under
human activity like sitting, walking, sneezing. Model is fast
and accurate, with <10% error vs. subway, airport, and

campus measurements.

® Introduced turbulence quantification for human movement

affecting airflow and pollutant dispersion.

Droplets residence time (s)
14.30 14.44 14,58 14,72 14.86 15.00

solution time 15 (s)

Spatiotemporal pollutant models under
various human scenarios

Yelocity: Magnitude (mis)
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Flow field analysis from pedestrian movement



Innovation 2 - Evacuation Optimization and Smoke Control

Personalized Evacuation Planning under Complex Conditions

® Proposed a dynamic evacuation algorithm considering

human movement and environmental factors.

® Combined YOLO-based person detection with real-time

Output

flow recognition and environmental occupancy.
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® Generated optimized escape routes under constraints like

toxic gas spread and random crowd distribution.

YOLOV5 network structure for human detection



Innovation 3 - Tunnel-Street Canyon Interaction

Pollution Dispersion Modeling for Tunnel Outlets and /‘i‘ >
A ; -
18 -
Exhaust Towers > O e
® Proposed a high-precision model for pollution spread from -
R e
tunnel portals and exhaust towers in urban clusters. P — - — -
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Wind and pollution fields near tunnel complexes
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atmospheric turbulence with surrounding terrain and

structural factors.
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® Suggested optimized emission strategy: improving e g F
efficiency by 40%, reducing energy by 20%. Applied in E B S
Dalian Bay and Taizishan tunnel projects (>8 km total .30 = - ()w ——
length). b ot

Pollutant spread under varying wind directions




Innovation 3 — Urban Microclimate Risk Modeling

High-Resolution Modeling of Street Canyons L
g
® Developed a fast prediction model for key street canyon E ” -
parameters under dominant influencing factors. Quantified
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and wind conditions on heat and pollutant dispersion. Prediction model for key urban parameters
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NOx exposure risks in street canyons




Engineering Applications — New Systems and Technologies

a) Traditional method
Air supply by jet fan (air volume: 1882m3/s; 35.49ppm)

® Developed oxygen-enriched systems for construction t0 CU' pummmms " —— e

b) New method

energy a nd |m prove Safety. Air supply in breathing hzgne‘f‘a:r.\_/?lg_r-ri(?:. 630m3/s ?7.84ppm)
c) Tilted new method

New Systems for Tunnel Construction and Operation

. . . Tilted air supply in breathing zone (air volume: 210m3/s; 36.76ppm)
® Breathing-zone ventilation reduced energy use by 67%. copem

Opp.
0.0000 36.671 73.343 110.01 146.69 183.36

® Emergency ventilation-escape decoupling improved Breathing-zone ventilation comparison

survival rates by 20%.

Traffic flow

c) Tilted new method

‘ N N
( 11/ [ Y11: Controller b) New method
12: Air supply port
13: Gas pipeline Vertical view

Oxygen-enriched ventilation system principle Tunnel evacuation simulation platform



Engineering Applications — Deployment and Benefits

Technology Transfer and Practical Achievements

® Signed four technology transfer contracts totaling ¥2.75 million. Generated over ¥10 million in total

economic benefits.

® Boosted discharge efficiency by 30% in major construction projects. Reduced energy use by ¥2 million

annually with smart ventilation. Enhanced dust control by 30% in Qinghai Salt Lake plant.
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